

FCC-ee and T/DAQ

CERN post-LHC project FCC-ee: Ultimate luminosity e⁺e⁻ collider in 88 – 365 GeV range

Factory for Z, W, Higgs, top, heavy flavour

 $3x10^{11} \tau$ decays $1.5x10^{12} b$ quarks

D (RF)
→ D (111)
- 11
//
//
//
/

FCC-ee parameters		Z	W+W-	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	40,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8,400	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1

From experimental point of view, conditions most challenging at Z-pole:

- 50 MHz BX rate
 - Continous beam, no power pulsing
- Physics rate of ~100 kHz
 - Physics event in 1 out of ~500 BX
 - Must be all recorded and kept for analysis
- Aim for ~10⁻⁵ precision to match statistics

Years

FCC-ee and T/DAQ

T/DAQ: How do we trigger and read out detectors? Basic questions, no answers yet

Overarching goal: Cross-section measurements to $\mathcal{O}(10^{-5})$ precision Trigger philosophy (as at LEP):

- Accept all annihilation (and normalisation) events
- Require the presence of at least one single particle candidate, charged or neutral, from one or more detector systems
 - Calorimeters, tracker, vertex detector(?)

In practice:

- Do we trigger on and read out every BX (20 ns) individually?
 - ATLAS/CMS-like: Events stored in on-detector pipelines and read out at L1Accept
 - What forms L1Accept? Need basically full detector: tracking + calorimetry
 - Where is L1 decision taken? Locally / globally?
- Or do we gang multiple BXs into one read-out?
 - Will see increase in pile-up parameter (prob. to merge 2 events in same read-out)
 - Mitigation via time stamping?
- Trigger-less readout?
 - Read out full detector periodically for every n BX (frequency = 50/n MHz)
 - Pile-up parameter will be *n**0.002

Other challenge:

• On-line and off-line data reduction that will make possible analysis of $\mathcal{O}(10^{13})$ events

T/DAQ decision strongly correlated with detector design. Need to minimize power consumption (no power pulsing) and material budget for services